454 research outputs found

    Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer

    Get PDF
    A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the top-layer solution. Second, a non-planar heterojunction with a large surface area is formed by the incorporation of a heterojunction agent (HA) to the top-layer solution. Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole- 4,7-diyl-2,5-thiophenediyl] (PCDTBT) is used for the bottom-layer and phenyl-C71-butyric-acid-methyl ester (PC70BM) is used for the top-layer. The SD-bilayer OPV produced utilizing both an OA and HA exhibits a power conversion efficiency (PCE) of 7.12% with a high internal quantum efficiency (IQE). We believe our bilayer system affords a new way of forming OPVs distinct from bulk heterojunction (BHJ) systems and offers a chance to reconsider the polymers that have thus far shown unsatisfactory performance in BHJ systemsope

    Tracing magnetism and pairing in FeTe-based systems

    Full text link
    In order to examine the interplay between magnetism and superconductivity, we monitor the non- superconducting chalcogenide FeTe and follow its transitions under insertion of oxygen, doping with Se and vacancies of Fe using spin-polarized band structure methods (LSDA with GGA) starting from the collinear and bicollinear magnetic arrangements. We use a supercell of Fe8Te8 as our starting point so that it can capture local changes in magnetic moments. The calculated values of magnetic moments agree well with available experimental data while oxygen insertions lead to significant changes in the bicollinear or collinear magnetic moments. The total energies of these systems indicate that the collinear-derived structure is the more favorable one prior to a possible superconducting transition. Using a 8-site Betts-cluster-based lattice and the Hubbard model, we show why this structure favors electron or hole pairing and provides clues to a common understanding of charge and spin pairing in the cuprates, pnictides and chalcogenides

    Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

    Full text link
    High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include

    Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.

    Get PDF
    BackgroundTo determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed.MethodsTen CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.ResultsAn average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1).ConclusionThe RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis

    Superconformal Yang-Mills quantum mechanics and Calogero model with OSp(N|2,R) symmetry

    Full text link
    In spacetime dimension two, pure Yang-Mills possesses no physical degrees of freedom, and consequently it admits a supersymmetric extension to couple to an arbitrary number, N say, of Majorana-Weyl gauginos. This results in (N,0) super Yang-Mills. Further, its dimensional reduction to mechanics doubles the number of supersymmetries, from N to N+N, to include conformal supercharges, and leads to a superconformal Yang-Mills quantum mechanics with symmetry group OSp(N|2,R). We comment on its connection to AdS_2 \times S^{N-1} and reduction to a supersymmetric Calogero model.Comment: 1+28 pages, no figure; Refs added. To appear in JHE

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Three-dimensional heterostructure of metallic nanoparticles and carbon nanotubes as potential nanofiller

    Get PDF
    The effect of the dimensionality of metallic nanoparticle-and carbon nanotube-based fillers on the mechanical properties of an acrylonitrile butadiene styrene (ABS) polymer matrix was examined. ABS composite films, reinforced with low dimensional metallic nanoparticles (MNPs, 0-D) and carbon nanotubes (CNTs, 1-D) as nanofillers, were fabricated by a combination of wet phase inversion and hot pressing. The tensile strength and elongation of the ABS composite were increased by 39% and 6%, respectively, by adding a mixture of MNPs and CNTs with a total concentration of 2 wt%. However, the tensile strength and elongation of the ABS composite were found to be significantly increased by 62% and 55%, respectively, upon addition of 3-D heterostructures with a total concentration of 2 wt%. The 3-D heterostructures were composed of multiple CNTs grown radially on the surface of MNP cores, resembling a sea urchin. The mechanical properties of the ABS/3-D heterostructured nanofiller composite films were much improved compared to those of an ABS/mixture of 0-D and 1-D nanofillers composite films at various filler concentrations. This suggests that the 3-D heterostructure of the MNPs and CNTs plays a key role as a strong reinforcing agent in supporting the polymer matrix and simultaneously serves as a discrete force-transfer medium to transfer the loaded tension throughout the polymer matrix

    Development of a 3D workspace Shoulder Assessment Tool Incorporating Electromyography and an Inertial Measurement Unit - A preliminary study

    Get PDF
    Traditional shoulder Range of Movement (ROM) measurement tools suffer from inaccuracy or from long experimental set-up times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an Electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a ‘frozen’ shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291±538 deg2 among all six healthy individuals and a ROM surface area of 13571±308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace

    Possible Novel Therapy for Malignant Gliomas with Secretable Trimeric TRAIL

    Get PDF
    Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL) and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL) delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI). Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas
    corecore